Test \#3: Chapter 7
 Mth 164-280

Name: \qquad

Important Dates/Times: Turn This Test in By-

Friday, 8:00AM, 04/09/10 $=10$ point bonus
Tuesday, 7:00PM, 04/13/10 = as graded
Wednesday, 8:00AM, 04/14/10 $=\max (25$ point penalty, 0 grade)
Thursday, 8:00AM, 04/15/10 $=\max (50$ point penalty, 0 grade)
Friday, 8:00AM, 04/16/10 $=\max (75$ point penalty, 0 grade)
Any Date Later $=0$ grade

Instructions: Print this test from the PDF file on Blackboard. Show all work on these pages. You may use the back of the pages, if necessary. Put only the answers in the answer block(s) if provided.

- If instructed to provide the numerical (decimal) answer, round it to the specified precision.
- If instructed to provide the exact answer, use π, a radical expression $(\sqrt{ })$, or a fraction, as applicable.

1. Given triangle ABC , with angle $\mathrm{A}=62^{\circ}$, angle $\mathrm{B}=51^{\circ}$, and side $\mathrm{c}=19$ units, find side a . (Round your answer to the nearest unit.)
\square
2. Given triangle ABC , with angle $\mathrm{A}=34^{\circ}$, side $\mathrm{b}=7$ units, and side $\mathrm{a}=11$ units, find angle B . (Round your answer to the nearest degree.)

Answer:
3. Given triangle $A B C$, with angle $B=71^{\circ}$, side $a=4$ units, and side $c=7$ units, find side b. (Round your answer to the nearest tenth of a unit.)

Answer:

4. Given triangle $A B C$, with side $a=26$ units, side $b=15$ units, and side $c=20$ units, find angle A. (Round your answer to the nearest degree.)

Answer:
5. Given triangle ABC , with angle $\mathrm{C}=61^{\circ}$, side $\mathrm{a}=55$ units, and side $\mathrm{b}=29$ units, find the area of the triangle. (Round your answer to the nearest square unit.)

Answer:

6. Given triangle ABC , with angle $\mathrm{B}=52^{\circ}$, angle $\mathrm{C}=68^{\circ}$, and side $\mathrm{b}=15$ units, find the area of the triangle. (Round your answer to the nearest square unit.)

Answer:

7. Use Heron's Formula to find the area of a triangle with sides of length 12 inches, 22 inches, and 18 inches. (Round your answer to the nearest square inch.)

Answer:

8. A vector has a magnitude of 16 and a direction of 240°. Write the vector in the form $\mathbf{v}=a_{1} \mathbf{i}+a_{2} \mathbf{j}$. Round a_{1} and a_{2} to the nearest hundredth.

Answer:
9. Given $\mathbf{u}=3 \mathbf{i}-5 \mathbf{j}$ and $\mathbf{v}=\mathbf{i}-2 \mathbf{j}$. Find $\mathbf{2 u}-\mathbf{3 v}$.

Answer:
10. Find the dot product of $\mathbf{u}=-4 \mathbf{i}+\mathbf{j}$ and $\mathbf{v}=3 \mathbf{i}+7 \mathbf{j}$.
\square
11. Find the smallest positive angle between the vectors $\mathbf{u}=<2,3>$ and $\mathbf{v}=\langle 6,4\rangle$. (Round your answer to the nearest degree.)

Answer:

12. A motorist drove 86 miles at a heading of 146°. The motorist then drove 74 miles at a heading of 236°. Find the distance of the motorist from the starting point. (Round your answer to the nearest mile.)

Answer:
13. A triangular piece of commercial real estate is priced at $\$ 10.25$ per square foot. What is the cost of a lot which measures 120 feet by 100 feet by 80 feet? (Round your answer to the nearest \$100.)

Answer:

