Date: 2010-04-06

Test #4: Chapter 8 Mth 164-280

Name:	
i tuillo.	

Important Dates/Times: Turn This Test in By-

Friday, 8:00AM, 04/09/10 = 10 point bonus Tuesday, 7:00PM, 04/13/10 = as graded Wednesday, 8:00AM, 04/14/10 = max(25 point penalty, 0 grade) Thursday, 8:00AM, 04/15/10 = max(50 point penalty, 0 grade) Friday, 8:00AM, 04/16/10 = max(75 point penalty, 0 grade) Any Date Later = 0 grade

<u>Instructions:</u> Print this test from the PDF file on Blackboard. Show all work on these pages. You may use the back of the pages, if necessary. Put <u>only</u> the answers in the answer block(s) if provided.

- If instructed to provide the numerical (<u>decimal</u>) answer, round it to the specified precision.
- If instructed to provide the <u>exact</u> answer, use π , a radical expression ($\sqrt{}$), or a fraction, as applicable.

1. Find the vertex, focus, and directrix of the parabola given by $x^2 = -\frac{1}{8}y$.

Vertex	
Focus	
Directrix	

2. Find the vertices and foci of the ellipse given by $4x^2 + 25y^2 - 8x - 150y + 129 = 0$.

Vertex, V ₁	
Vertex, V ₂	
Focus, F ₁	
Focus, F ₂	

minor axis of length 10 units.	
nswer:	

4.	Find the	vertices,	foci, and	d asymptotes	of the	hyperbola	given	by the e	quation:
		,	,	<i>J</i> 1		J 1	\mathcal{C}	J	1

$$\frac{x^2}{25} - \frac{y^2}{100} = 1 \ .$$

Vertex, V ₁		
Vertex, V ₂		
Focus, F ₁		
Focus, F ₂		
Asymptotes		

5. Graph:
$$\frac{x^2}{36} + \frac{y^2}{16} = 1$$

6. Graph:
$$\frac{x^2}{25} - \frac{y^2}{4} = 1$$

	es and asymptotes of the hyperbola given by the equation: $x - 2y + 31 = 0$.
Vertex, V ₁	
Vertex, V ₂	
Asymptotes	

Answer:			

8. Find the equation, in standard form, of the parabola with directrix x = 5 and

9. Determine whether the graph of $x^2 - 6x - 12y - 15 = 0$ is the graph of a parabola, an ellipse, or a hyperbola.

Answe	Answer – check the box of the correct graph				
	This is a graph of a parabola.				
	This is a graph of an ellipse.				
	This is a graph of a hyperbola.				

10. Eliminate the parameter of the curve given by x = t + 5, and $y = t^2 + 3$.

Curve:

y =

11. Eliminate the parameter of the curve given by $x = 3 \sin t$, $y = 4 \cos t$ and graph the curve given by these parametric equations.

Curve:

