Date: 2010-05-11

Final Exam: Chapters 5-9, 11 Mth 164-280

General Test Instructions:

You may use your calculator or any software on your computer to directly calculate the answers. **All answers must be recorded on a Scantron form.**

- 1. Find the length (to the nearest hundredth of an inch) of an arc that subtends a central angle 105° in a circle of radius 12 inches.
 - a. 21.99 inches
 - b. 22.06 inches
 - c. 21.78 inches
 - d. 24.68 inches
 - e. None of these
- 2. A wheel is rotating a 8 revolutions per second. Find its angular speed in radians per second (to the nearest hundredth).
 - a. 50.14 radians per second
 - b. 51.98 radians per second
 - c. 49.96 radians per second
 - d. 50.27 radians per second
 - e. None of these

- 3. If θ is an acute angle such that $\tan \theta = \frac{5}{9}$, find the exact value of $\csc \theta$.
 - a. 2
 - b. $\frac{2\sqrt{26}}{5}$
 - c. $\frac{\sqrt{106}}{5}$
 - d. $\frac{2\sqrt{29}}{7}$
 - e. None of these
- 4. Use a calculator to find the value of csc 36° to the nearest ten-thousandth.
 - a. -7.8147
 - b. 1.7013
 - c. 1.3656
 - d. 1.2361
 - e. None of these
- 5. Find the values of $\sin \theta$, $\cos \theta$, and $\tan \theta$ for the right triangle shown below.

- a. $\sin \theta = \frac{3\sqrt{13}}{13}, \cos \theta = \frac{2\sqrt{13}}{13}, \tan \theta = \frac{3}{2}$
- b. $\sin \theta = \frac{2\sqrt{13}}{13}, \cos \theta = \frac{3\sqrt{13}}{13}, \tan \theta = \frac{2}{3}$
- c. $\sin \theta = \frac{3\sqrt{5}}{5}$, $\cos \theta = \frac{2\sqrt{5}}{5}$, $\tan \theta = \frac{3}{2}$
- d. $\sin \theta = \frac{2\sqrt{5}}{5}$, $\cos \theta = \frac{3\sqrt{5}}{5}$, $\tan \theta = \frac{3}{2}$
- e. None of these

- 6. Use the Reference Angle Theorem to find the exact value of $\sec\left(-\frac{3\pi}{4}\right)$
 - a. $\sqrt{2}$
 - b. $-\sqrt{2}$
 - c. $\frac{\sqrt{2}}{2}$
 - d. $-\frac{\sqrt{2}}{2}$
 - e. None of these
- 7. Express $\frac{\csc^2 \theta 1}{\csc^2 \theta}$ as a single term that involves the cosine function.
 - a. $cos^2\theta$
 - b. $2\cos\theta$
 - c. $\frac{1}{\cos^2\theta}$
 - d. $\cos^2 \theta 1$
 - e. None of these
- 8. Fine the amplitude, period, and phase shift for the function $= -2 \sin \left(3x \frac{\pi}{6}\right)$.

 - a. $2, \frac{2\pi}{3}, \frac{\pi}{6}$ b. $-2, \frac{2\pi}{3}, \frac{\pi}{18}$
 - c. 2, $\frac{2\pi}{3}$, $\frac{\pi}{18}$
 - d. -2, $\frac{2\pi}{3}$, $\frac{\pi}{6}$
 - e. None of these
- 9. Simplify the expression $\frac{\sin^2 x \cos x}{\cos^2 x} + \cos x$ to produce one of the following:
 - a. $\sec x$
 - b. cos^2x
 - c. $\cos x$
 - d. $\csc x$

- 10. Simplify the expression $\frac{\sin x}{1+\sin x} \frac{\sin x}{1-\sin x}$ to produce one of the following:
 - a. $-2sin^2x$
 - b. -2
 - c. sec^2x
 - d. $-2tan^2x$
- 11. Given $\cos \alpha = -7/25$, with α in Quadrant III, and $\cos \beta = 8/17$, with β in Quadrant I, find the *exact* value of $cos(\alpha - \beta)$.

 - b. $-\frac{416}{425}$

 - d. $-\frac{56}{425}$
 - e. None of these
- 12. Write $cos^2 4\theta sin^2 4\theta$ as a single term:
 - a. $\cos 4\theta$
 - b. 1
 - c. $\sin 8\theta$
 - d. $\cos 8\theta$
 - e. None of these
- 13. Find the exact value of $\sin \frac{\alpha}{2}$, given that $\cos \alpha = -7/24$, with α in Quadrant III.
 - a. $\frac{\sqrt{93}}{12}$

 - c. $-\frac{\sqrt{93}}{12}$ d. $-\frac{\sqrt{51}}{12}$

 - e. None of these

14. Find the exact value of $\cos 2\alpha$, given that $\cos \alpha = -7/12$, with α in Quadrant II.

- a. $-\frac{31}{18}$ b. $\frac{31}{18}$ c. $-\frac{23}{72}$ d. $\frac{23}{72}$

- e. None of these

15. Write the expression $2\cos^2 4\theta - 1$ as a single term

- a. $\cos 2\theta$
- b. $\cos 8\theta$
- c. 1
- d. $\sin 8\theta$
- e. None of these

16. Find the *exact* value of $\sin\left(\cos^{-1}\frac{7}{25}\right)$

- e. None of these

17. Solve $2\sin^2 x + 9\cos x + 9 = 0$ where $0 \le x < 2\pi$

- a. $\frac{3\pi}{2}$
- $b. \ \pi$
- c. $0, \frac{\pi}{2}$
- d. 0
- e. None of these

- 18. Solve the triangle ABC, with angle $A = 50^{\circ}$, angle $B = 81^{\circ}$, and side c = 12 miles. Round sides a and b to the nearest hundredth of a mile.
 - a. $C = 49^{\circ}$, a = 15.70 miles, b = 12.80 miles
 - b. $C = 49^{\circ}$, a = 12.18 miles, b = 15.70 miles
 - c. $C = 49^{\circ}$, a = 3.30 miles, b = 7.93 miles
 - d. $C = 49^{\circ}$, a = 7.93 miles, b = 3.30 miles
 - e. None of these
- 19. In triangle ABC, angle $B=44^{\circ}$, side a=29 and side c=17. Find side b (round to the nearest whole unit).
 - a. 39
 - b. 420
 - c. 150
 - d. 21
 - e. None of these
- 20. In triangle ABC, side a = 20, side b = 33, and side c = 18. Find angle A (to the nearest tenth of a degree).
 - a. 148.5°
 - b. 11.8°
 - c. 42.3°
 - d. 31.5°
 - e. None of these
- 21. Given angle $A = 34^\circ$, angle $B = 58^\circ$, and side a = 6 units, find the area of triangle ABC. Round to the nearest tenth of a square unit.
 - a. 2.8 units^2
 - b. 15.3 units²
 - c. 27.3 units²
 - d. 54.6 units²
 - e. None of these

- 22. Use Heron's formula to find the area (to the nearest square inch) of a triangle with sides of length 23 inches, 29 inches, and 12 inches.
 - a. 262 in^2
 - b. 131 in^2
 - c. 78 in^2
 - d. 147 in²
 - e. None of these
- 23. A vector has a magnitude of 15 and a direction of 230°. Write the vector in the form $a_1\mathbf{i} + a_2\mathbf{j}$. State a_1 and a_2 rounded to the nearest hundredth.
 - a. -7.36i 12.42j
 - b. -9.64i + 11.49j
 - c. -9.64i 11.49i
 - d. -8.24i 10.48j
 - e. None of these
- 24. Given $\mathbf{u} = 5\mathbf{i} + 10\mathbf{j}$ and $\mathbf{v} = \mathbf{i} 3\mathbf{j}$, find $2\mathbf{u} 9\mathbf{v}$.
 - a. 19i 7j
 - b. i + 47j
 - c. $\mathbf{i} 7\mathbf{j}$
 - d. -80i + 47j
 - e. None of these
- 25. Find the dot product of $\mathbf{u} = 2\mathbf{i} 7\mathbf{j}$ and $\mathbf{v} = \mathbf{i} + 8\mathbf{j}$.
 - a. -54
 - b. -13
 - c. 58
 - d. -12
 - e. None of these
- 26. A triangular piece of property costs \$5.80 per square foot. If the lot measures 90 feet by 80 feet by 70 feet, find the cost of the property. Round to the nearest hundred dollars.
 - a. \$2,700
 - b. \$308,100
 - c. \$15,600
 - d. \$20,900
 - e. None of these

- 27. Find the vertex, focus, and directrix of the parabola given by $2y^2 = -3x$.
 - a. Vertex: (0,0); focus: $\left(\frac{3}{8},0\right)$; directrix: $x=-\frac{3}{8}$
 - b. Vertex: (0,0); focus: $\left(-\frac{3}{8},0\right)$; directrix: $x=\frac{3}{8}$
 - c. Vertex: (0,0); focus: (3,0); directrix: x = -3
 - d. Vertex: (0,0); focus: (-3,0); directrix: x = 3
 - e. None of these
- 28. Find the vertex, focus, and directrix of the parabola given by $x^2 + 8x 16y + 80 = 0$.
 - a. Vertex: (4, -4); focus: (4,0); directrix: y = -8
 - b. Vertex: (-4, 4); focus: (-4, 20); directrix: y = -12
 - c. Vertex: (4, -4); focus: (8, -4); directrix: x = 0
 - d. Vertex: (-4, 4); focus: (-4, 8); directrix: y = 0
 - e. None of these
- 29. Find the vertices and foci of the ellipse given by $5x^2 + y^2 + 60x + 4y + 159 = 0$.
 - a. Vertices: (-11, -2) and (-1, -2); foci: $(-6 + 2\sqrt{5}, -2)$ and $(-6 2\sqrt{5}, -2)$
 - b. Vertices: (6,7) and (6,-3); foci: $(6,2+2\sqrt{5})$ and $(6,2-2\sqrt{5})$
 - c. Vertices: (6,7) and (6,-3); foci: $(6+2\sqrt{5},2)$ and $(6-2\sqrt{5},2)$
 - d. Vertices: (-6, 3) and (-6, -7); foci: $(-6, -2 + 2\sqrt{5})$ and $(-6, -2 2\sqrt{5})$
 - e. None of these
- 30. Find the equation, in standard form, of the ellipse that has foci at $(-3 + \sqrt{15}, 6)$ and $(-3 \sqrt{15}, 6)$, and the length of whose minor axis is 12.

a.
$$\frac{(x+3)^2}{159} + \frac{(y-6)^2}{144} = 1$$

b.
$$\frac{(x-3)^2}{39} + \frac{(y+6)^2}{24} = 1$$

c.
$$\frac{(x+3)^2}{51} + \frac{(y-6)^2}{36} = 1$$

d.
$$\frac{(x-3)^2}{39} + \frac{(y-6)^2}{24} = 1$$

e. None of these

- 31. Find the vertices and asymptotes of the hyperbola given by $\frac{y^2}{100} \frac{x^2}{81} = 1$.
 - a. Vertices: (0, 10) and (0, -10); asymptotes: $y = \pm \frac{9}{10}x$
 - b. Vertices: (9,0) and (-9,0); asymptotes: $y = \pm \frac{9}{10}x$
 - c. Vertices: (9,0) and (-9,0); asymptotes: $y = \pm \frac{10}{9} x$
 - d. Vertices: (0, 10) and (0, -10); asymptotes: $y = \pm \frac{10}{9}x$
 - e. None of these
- 32. Which of the following statements describes the graph of $x^2 4x + y^2 = 5$?
 - a. It is a parabola that opens up.
 - b. It is a hyperbola that opens up and down.
 - c. It is an ellipse.
 - d. It is a hyperbola that opens left and right.
 - e. None of these
- 33. Determine which of the following equations can be produced by eliminating the parameter t from = t + 5, $y = t^2 + 3$.

a.
$$y = x^2 - 22$$

b.
$$y = x^2 - 28$$

c.
$$y = x^2 - 10x + 28$$

d.
$$y = x^2 + 10x + 28$$

- e. None of these
- 34. Solve the system: $\begin{cases} 2x 3y = 15 \\ y = \frac{2}{3}x 10 \end{cases}$ What is the value of x in the solution?

a.
$$x = -\frac{15}{4}$$

b.
$$x = \frac{15}{4}$$

c.
$$x = \frac{45}{4}$$

d. The system is inconsistent, there is no solution.

35. Solve the system:
$$\begin{cases} x + 5y - z = 22 \\ 3x + 4y - 4z = 10 \\ x + y - z = 2 \end{cases}$$
 What is the value of z in the solution?

a.
$$z = 1$$

b.
$$z = -2$$

c.
$$z = -3$$

- d. The system is inconsistent, there is no solution.
- e. None of these

36. Solve the system:
$$\begin{cases} x + y - 4z = 6 \\ 2x - 5y + 3x = 2 \\ x - 6y + 7z = -4 \end{cases}$$
 What is the value of y in the solution?

a.
$$y = 2$$

b.
$$y = 3$$

c.
$$y = 5$$

- d. The system is inconsistent, there is no solution.
- e. None of these

37. Solve the dependent system:
$$\begin{cases} x - y + z = -6 \\ 2x - 3y + 4y = -12 \end{cases}$$
 Let $z = c$ in your solution

a.
$$(2c, c + 6, c)$$

b.
$$(2c, c - 6, c)$$

c.
$$(c - 6, 2c, c)$$

d.
$$(c + 6, c, c)$$

38. Solve the system:
$$\begin{cases} y = 2x + 2 \\ y = x^2 + 4x - 1 \end{cases}$$
 What is the value of x in the solution?

a.
$$x = 1$$

b.
$$x = 1 \text{ and } x = -3$$

c.
$$x = -1$$
 and $x = 3$

d. There is no real solution, the graphs never intersect.

39. Solve the system:
$$\begin{cases} x^2 - 100y^2 = 100 \\ x^2 + y^2 = 100 \end{cases}$$
 What is the value of x in the solution?

a.
$$x = -10$$
 and $x = 10$

b.
$$x = 10$$

c.
$$x = 0$$

- d. There is no real solution, the graphs never intersect.
- e. None of these
- 40. Find the equation of the circle that passes through the points (4, 10), (1, 1), and (8, 2).

a.
$$x^2 + 4x + y^2 - 5y + 25 = 0$$

b.
$$x^2 - 8x + y^2 - 10y + 16 = 0$$

c.
$$x^2 - 8x + y^2 - 5y + 25 = 0$$

d.
$$x^2 + 4x + y^2 - 10y + 16 = 0$$

- e. None of these
- 41. Flying with the wind, a plane traveled 312 miles in 2 hours. Flying against the wind, the plane traveled the same distance in 3 hours. Find the rate of the plane in calm air and the rate of the wind.

- e. None of these
- 42. A silversmith has two alloys. The first alloy is 28% silver, and the second is 60% silver. How many grams of each should be mixed to produce 80 grams of an alloy that is 52% silver?
 - a. 15 grams of 28% silver, 65 grams of 60% silver
 - b. 20 grams of 28% silver, 60 grams of 60% silver
 - c. 25 grams of 28% silver, 55 grams of 60% silver
 - d. 30 grams of 28% silver, 50 grams of 60% silver
 - e. None of these

- 43. Find the fifth (5th) term of the sequence that has an n^{th} term of $\frac{(-1)^n(n+2)!}{4}$
 - a. 1260
 - b. 1.75
 - c. -1260
 - d. -1.75
 - e. None of these
- 44. Find the fourth (4th) term of the sequence defined by the recursive formula

$$a_1 = -5$$
, $a_2 = 3$; ... $a_n = na_{n-1} + 5a_{n-2}$ for $n \ge 3$

- a. -49
- b. -16
- c. -325
- d. 16
- e. None of these
- 45. The sequence defined by $a_n = 15 4n$ is:
 - a. an arithmetic sequence
 - b. a geometric sequence
 - c. the Fibonacci sequence
 - d. the binomial sequence
 - e. None of these
- 46. The sequence defined by $a_n = \frac{1}{4} \left(-\frac{2}{3} \right)^{n-1}$ is:
 - a. an arithmetic sequence
 - b. a geometric sequence
 - c. the Fibonacci sequence
 - d. the binomial sequence
 - e. None of these

- 47. The sequence defined by $a_n = \frac{10}{n!}$ is:
 - a. an arithmetic sequence
 - b. a geometric sequence
 - c. the Fibonacci sequence
 - d. the binomial sequence
 - e. None of these
- 48. Write -5 + 6 7 + 8 9 + 10 in summation notation.
 - a. $\sum_{k=1}^{6} (-1)^k (4k+1)$
 - b. $\sum_{k=0}^{5} (-1)(4k+1)$
 - c. $\sum_{k=1}^{6} (-1)^k (4k-1)$
 - d. $\sum_{k=1}^{6} (-1)^k (k+4)$
 - e. None of these
- 49. Find: $\sum_{k=2}^{7} (-1)^k (3k-2)$
 - a. -15
 - b. -9
 - c. -6
 - d. 15
 - e. None of these
- 50. Write $0.\overline{261}$ as the quotient of two integers. Give your answer in lowest terms.
 - a. $\frac{261}{99}$
 - b. $\frac{259}{999}$
 - c. $\frac{259}{990}$
 - d. $\frac{289}{980}$
 - e. None of these